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The purpose of study is to check whether the power of detecting the effect of 

intervention versus control in a pre- and post-study can be increased by using a stratified 

randomized controlled design. A stratified randomized controlled design with two study 

arms and two time points, where strata are determined by clustering on baseline outcomes 

of the primary measure, is considered. A modified hierarchical clustering algorithm is 

developed which guarantees optimality as well as requiring each cluster to have at least 

one subject per study arm. The power is calculated based on simulated bivariate normal 
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distributed primary measures with mixture normal distributed baseline outcomes. The 

simulation shows that the power of this approach can be increased compared with using a 

completely randomized controlled study with no stratification. The difference of the power 

between with stratification and without stratification increases as the sample size increases 

or as the correlation of the pre- and post-measures decreases. 

 

 

 



www.manaraa.com

1 

 

 

 

 

CHAPTER 1 Introduction 

 

A completely randomized controlled study with two study arms and two time 

points (pre- and post-intervention) is considered for the power to detect differences 

between intervention versus control effects. The power may be increased by controlling the 

variance between subjects or units of randomization.  Here a pre-post design can help 

control the within subject variance, since each subject uses its own as control (Park and 

Johnson (2005)). The variance may be further controlled by stratification into blocks prior 

to randomization, where the blocks are relatively homogeneous on the baseline primary 

measures (Park and Johnson (2005)). Although Park and Johnson (2006) pointed out that 

treating the baseline as a covariable provided maximal control of the variance, with or 

without pair-matching, we are interested in understanding the effect of baseline clustering 

when considering an analysis of pre-post differences.  

In order to stratify subjects into relatively homogeneous blocks, partitions of the 

subjects clustered on the baseline values may be formed with the partition that minimizes 

the root mean squared error (RMSE) of the baseline values. 

Since subjects within each block will be randomized to study arms, the subjects’ 

baseline values must be clustered so that not only the minimal RMSE is achieved, but also 

each cluster must have at least the same number of subjects as arms of the study. Here we 

have two study arms, so each cluster must have at least two subjects to randomize.  
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Hierarchical clustering methods, such as k-means, are often used to identify 

clusters. The k-means procedure does not always find the optimal clustering for a set 

number of clusters since the procedure employs a random path.  And these methods cannot 

easily constrain the result to have the minimum number of subjects for each cluster. 

Unconstrained, the solution may result in one or more clusters having less than the 

required number of subjects. Fusing neighboring clusters can resolve this, but may result in 

a non-optimal set of clusters (Park and Johnson (2004)). 

In order to get an optimal set of clusters with constraints on number of subjects, a 

modified hierarchical clustering algorithm is developed here for identifying clusters of 

univariate baseline outcome data. It not only guarantees optimality, but also places the 

desired constraint on the minimum number of subjects in each cluster.  

The power is calculated based on simulated bivariate pre-post measures where the 

measure at each time point is distributed as a mixture of normal distributions. The data are 

simulated based on the correlation between pre-post measurements, the proportion of 

baseline data that comes from the first distribution of the mixture normal distribution, the 

ratio of the two variances of the mixture normal distribution and the sample size. The 

power of testing the null hypothesis of no difference in intervention versus control effects 

using pre- and post-intervention design is compared using the cluster stratification versus 

no stratification.   
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CHAPTER 2 Background 

 

 Literature Review 

Pair-wise matching on ordered baseline means can help reduce the variance of pre-

post differences when the correlation between the pre-post measures is small, under the 

assumption of equal sample sizes (Park and Johnson (2005)). Park and Johnson (2006) 

pointed out that treating the baseline means as a covariable provided maximal control of 

the variance, with or without pair-matching. Pair-matching reduced the variance when 

using a posttest only analysis or pre-post differences. They conducted six design and 

analysis methods for controlling the variance of the differences in intervention versus 

control effects. Both with and without matching were considered, and for each case, three 

analysis designs were considered: (1) posttest only, (2) posttest analysis adjusting for 

baseline as a covariate, and (3) pre-post differences.  

Park and Johnson (2004) conjectured that matching based on how the baseline 

values ‘clustered’ is better than pairing the baseline values after sorting, since pairing 

would cause dissimilar baseline values be forced to be in the same match group. Actually, 

clustering is a powerful tool in finding subsets or clusters which are homogeneous and/or 

well separated (Aloise, et al. (2009)). The most widely used method for clustering is the k-

means method which partitions data into k clusters in which each observation belongs to 

the cluster with the nearest mean (Jain (2010)).  
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However, the problem is NP-hard (non-deterministic polynomial-time hard) in a 

general Euclidean space, even when the number of clusters k=2 (Aloise, et al. (2009), 

Dasgupta and Freund (2009)). There have been many attempts to provide an algorithm that 

solves this problem.  

The term k-means was first used by MacQueen (1967). It described a simple and 

easy way to classify a given data set through a certain number of clusters (assume k 

clusters) fixed a priori. The k-means procedure consists of simply starting with k groups, 

each of which consists of a single random point, and thereafter adding each new point to 

the group whose mean the new point is nearest, which is determined by the distance 

calculated with Lebesgue measure. After a point is added to a group, the mean, or centroid, 

of that group is adjusted in order to take account of the new point. Thus at each stage the k-

means are, in fact, the means of the clusters they represent (hence the term k-means). We 

may notice that the k centroids change their location step by step until no more changes are 

done. If the process converges, the final cluster seed will represent the centroids.  

Another method called “nearest centroid sorting” (Anderberg (1973)) was provided 

after the k-means algorithm. The procedure is an improved k-means algorithm, it has the 

same process but the new point is added to the group when it achieves the minimum sum 

of squared Euclidean distances from each entity to the centroid of the cluster to which it 

belongs. The centroid of that group is adjusted after the new point is added.  

Dasgupta and Freund (2009) also provided a definition of the k-means problem. 

Assume the input is a set of n vectors  1, , , D

n iS x x x R  . The output is a set of k 
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vectors  1, , kR   , D

i R  , where k is much smaller than n. The set R is called a 

codebook. R is a good codebook for S if for most x S  there is a representative r R  

such that the Euclidean distance between x and r is small. The average quantization error 

of R with respect to S is  

2

1

2

1
1

( , ) min

1
min

j
j k

n

i j
j k

i

Q R S E X

x
n





 

 


  
  

 
 

where   denotes Euclidean norm and the expectation is over X drawn uniformly at 

random from S. The goal is to construct a codebook R with a small average quantization 

error. The k-optimal set of centers is defined to be the codebook R of size k for which 

( , )Q R S is minimized; the task of finding such a codebook is sometimes called the k-means 

problem. 

The standard iterative k-means algorithm (Lloyd (1982)) is a widely used heuristic 

solution. The algorithm iteratively calculates the within-cluster sum of squared distances, 

modifies group membership of each point to reduce the within-cluster sum of squared 

distance, and computes new cluster centers until local convergence is achieved.  

Although it can be proved that the procedure will always terminate, the k-means 

algorithm is not, in general, able to find the optimal solution. The solution is not far from 

optimal (Dasgupta and Freund (2009)); that is, the set of k clusters that achieves minimum 

RMSE. The algorithm is also significantly sensitive to the initial randomly selected cluster 

centers, which causes the algorithm to be neither optimal nor repeatable. The repeatability 
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of the algorithm is very important since the subject should fall into the same group to 

receive the intervention regardless of how many times the clustering is applied. Often one 

restarts the procedure a number of times to mitigate the problem of optimality. It has been 

recommended to use an all partition method where all possible partitions meeting the 

constraints are considered in order to find the optimal partition; however, this is feasible 

only for small N, as the number of cluster partitions to be considered increases almost 

exponentially with N (Park and Johnson (2004)). This may lead to a substantial increase in 

runtime.  

The importance of initial seed selection was also demonstrated by Milligan (1980). 

He compared fifteen clustering algorithms and found out that the k-means algorithm 

produced excellent repeatability, or recovery of cluster structure, when the starting seeds 

were obtained from the group average method or when valid a priori information existed. 

Despite this advantage, all k-means algorithms produced recovery values which were 

significantly worse than others in the error-free condition when random starting seeds were 

used. So the starting partition must be close to the final solution if the k-means algorithm is 

to be expected to give good recovery.  

Since the standard iterative k-means algorithm does not guarantee optimality and 

repeatability, Wang and Song (2011) developed a dynamic programming “CKmeans” 

algorithm to find optimal one-dimensional clustering. The algorithm first arranges the 

baseline measures in a non-descending order and then calculates the minimum Euclidean 

sums of squares of within-cluster distances from each subject to its corresponding cluster 

mean iteratively by adding one observation at a time. Simulation is used to prove that their 
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method not only guarantees optimality but also has a fast runtime, especially as the number 

of clusters is big. This algorithm cannot guarantee each cluster has the same number of 

subjects as number of arms.  

 

Summary 

Matching based on how the baseline values ‘cluster’ can help reduce the variance of pre-

post differences. In general, k-means methods are used to cluster subjects at the baseline, 

but these methods do not guarantee optimality and repeatability. The improved 

“CKmeans” algorithm leads to an optimal and repeatable unconstrained solution, but it 

cannot guarantee at least two subjects in each cluster. In this thesis, we develop a 

modification to “CKmeans” that achieves an optimal solution when applied to univariate 

baseline outcome data and guarantees each cluster has at least two subjects to randomize 

into two study arms. Power is calculated for a stratified randomized controlled design with 

strata defined as clusters generated by this improved clustering algorithm. The calculated 

power is compared to the power achieved using a completely randomized controlled study 

with no stratification. 
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CHAPTER 3 Methods 

 

Clustering on baseline 

In order to cluster on baseline with minimum RMSE, and with the restriction that 

every cluster has at least two subjects, we provide a new algorithm which is an 

improvement of “CKmeans.1d.dp” algorithm (Wang and Song (2011)). Since minimizing 

Euclidean sums of squares (ESS) is equivalent to minimizing RMSE when dealing with 

univariate data, we calculate RMSE by getting the square root of the ratio of withinss and 

degrees of freedom, where withinss represents the minimum Euclidean sums of squares of 

within-cluster distances from each subject to its corresponding cluster mean, and the 

degrees of freedom is the difference between total subjects and number of clusters. 

Let 1,..., nx x  be the non-descending sorted baseline values of n subjects. We seek 

the cluster partition that minimizes RMSE. First of all, we consider clustering i subjects 

into m clusters in general with minimum withinss. We record the corresponding minimum 

withinss in entry  ,D i m  of an 1n   by 1
2

n 
 

 
 matrix D , since n subjects can be 

clustered into at most 
2

n 
 
 

 clusters based on the constraint that every cluster has at least 

two subjects, where 
2

n 
 
 

 means the integer part of 
2

n
. Since the last row of the matrix D 

means clustering all the subjects. Thus the minimum value of the last row in matrix D 
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corresponds to the cluster partition with the smallest withinss value, the solution to the 

original problem. Let j be the index of the smallest number in cluster m in an optimal 

solution to  ,D i m , and j must be 2 1 1m j i    . Here j cannot less than 2 1m  

because it must have at least two subjects in each cluster, that is at least 2 2m  totally for 

the first 1m   clusters. It is evident that  1, 1D j m   must be the optimal withinss for 

the first 1j   points in 1m   clusters, for otherwise one would have a better solution to 

 ,D i m . This establishes the optimal substructure for dynamic programming and leads to 

the recurrence equation 

       
2 1 1

, min 1, 1 ,..., ,j i
m j i

D i m D j m d x x
   

     1 ,1i n m k     

where  ,...,j id x x  is the sum of squared distances from ,...,j ix x  to their mean. The matrix 

is initialized as  , 0D i m 
 
when 0m   and 0i  ;  ,D i m  when 0m   xor 0i  . 

Using the above recurrence, we can obtain  ,D n m  the minimum withinss if all n numbers 

are clustered into m groups, with minimum
[ , ]

[ , ]
D n m

RMSE n m
n m




. 

In order to make the program more efficient, it is suggested in Wang and Song 

(2011) that one compute  ,...,j id x x  in the recurrence;  ,...,j id x x  can be computed 

progressively based on  1,...,j id x x . Using a general index from 1 to i, we iteratively 

compute 

     
2

1 1 1 1

1
, , , ,i i i i

i
d x x d x x x

i
 


   , with 1( 1)i i

i

x i

i


  
 ,  
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where i  is the mean of the first i elements. To find a clustering of data with minimum 

withinss of [ , ]D n k , an auxiliary n by k matrix B is defined to record the index of the 

smallest number in cluster m 

      
2 1 1

, argmin 1, 1 , ,j i
m j i

B i m D j m d x x
   

    , 1 ,1i n m k     

Then we backtrack from  ,B n k  to obtain the starting and ending indices for all clusters 

and generate an optimal solution to the k-means problem. 

 

Randomization 

We randomize the baseline measures within each cluster to intervention and control 

groups. If the number of measures is even in the cluster, then half of them will be assigned 

to intervention and half to control. Since some of the clusters have an odd number of 

measures (if any cluster has an odd number of measures, then there must be an even 

number of such clusters). If the number of measures is odd, then the first odd number 

cluster will be assigned one more subject to intervention group and the second odd number 

cluster will be assigned one more subject to control group. If more clusters have odd 

numbers, then this process is repeated. 

The randomization procedure is using a probability-tree method to do simple 

random sampling for each cluster. Let k be the number of subjects that should be assigned 

into intervention, and N be the total subjects in the cluster. Generate a random variable 

from uniform distribution (0,1)U , and then compare this random variable to the ratio 
k

N
. 
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If random variable is not greater than 
k

N
, then we assign this subject to intervention group, 

or else assign this subject to control group. The algorithm continues using 1N N   and 

1k k  if the subject is assigned into intervention group, or 1N N   and k k if the 

subject is assigned into the control group. 

 

Modeling the treatment effect 

After we assign the subjects into intervention and control groups, a pre-set 

treatment effect is added to the post measures if the subject is in the intervention group. 

The differences between pre-post measures are calculated for each subject and a linear 

model, given by 0 1 2

1

k

i i j j id t x        , is used to model the effect of the i
th

 subject 

in the intervention or control group. The difference between the intervention and control is 

1 ( )T C T C

i i i id d        , where T

id  and C

id  are the effects under the intervention and 

control group, respectively,  1it   means the i
th

 subject is assigned into intervention group, 

and 0it   means control group.  Also 1jx   means the i
th

 subject is assigned into the  j
th

  

cluster and k is the total number of clusters used to achieve minimum sum of squared 

Euclidean distances from each entity to the centroid of the cluster to which it belongs. We 

assume the residuals
2(0, )i N  as is common. Although we know here the residuals are 

not normally distributed, since the baseline data are not normal, but mixture normal 

distributed.  
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Simulation 

The bivariate normally distributed pre-post measures of n subjects are simulated. 

For each subject, pre- and post-measures are 1 2 1 2( , ) ( , , , , ), 1,2, ,i iX Y N i n      , 

with equal means 1 2  , equal variances 2 2

1 2  , and   is correlation between pre-

measure iX  and post-measure iY . The baseline measures follow a mixture normal 

distribution 1, , ( ) ( ) (1 ) ( )n i i iX X h x pf x p g x    where 
2

1 1( ) ( , )if x N    and 

2

2 2( ) ( , )ig x N    are independent. The fixed number [0,1]p  is the proportion of pre- 

and post-measures that follow the distribution 
2

1 1( ) ( , )if x N   . When 0p  or 1, the 

distribution of baseline measures can be changed into a unimodal normal distribution.  

In order to simplify, set 2

2 1  , and let 2 2

1   (or 2 2 2

1 2/   ) and 1 2    . 

By setting the mean of baseline measures   0iE X  , we have 1 2(1 ) 0p p    . Then 

we can calculate 1 (1 )p     and 2 p    . Let m be the number of subjects that have 

pre-measures from the distribution 
2

1 1( ) ( , )if x N   ; then we can assume 

( , )m Binomial n p  and  

2((1 ) , )iX N p   , with 
2 2( , ) ((1 ) ,(1 ) , , , )i iX Y N p p      

 
for 1,2, ,i m ;  

( ,1)iX N p 
 
with ( , ) ( , ,1,1, )i iX Y N p p    

 
for 1, 2, ,i m m n   . 

The number of simulations is dependent on the probability pr of the result of a 

random process; here the result is the significant evidence that the effects in interventions 

and controls are different, that is presented as p-values less than 0.05. Since the result of a 

random process follows a Bernoulli distribution with probability pr, then the variance of 
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the result occuring is (1 )pr pr . We usually use 0.5pr   as default if we have no 

knowledge of the value of pr, but if we know the null hypothesis that there is no difference 

between intervention and control is not true, then we set up 0.05pr   since we know the 

p-value should be less than 0.05.  

And also we could define 0.95  , where it means we wish to estimate pr  with at 

least 95% confidence. We need to find a standard normal variable z such that
 

  0.95P z Z z     that is 1 1
1.96

2
z

  
   

 
, where 1 is a quantile function. 

Then the number of simulations should be no smaller than 

2

(1 )
z

N pr pr
E

 
   

 
, where 

0.005E   for the maximum error in estimate. 

In all, 7299 simulations were conducted under the null hypothesis that there was no 

treatment difference between the intervention and control groups, while 38415 simulations 

were conducted under the alternative hypothesis that treatment effects were different for 

intervention and control groups so that estimate will be within 0.005 of the true value 

within at least 95% confidence. 

The following describes the set of parameters used in the simulations. The 

proportion is defined as the first normal distributed data weighted in the two mixed normal 

distribution, proportion sets to 0.1, 0.3, 0.5, 0.7, and 0.9. The variance ratio between the 

first normal and the second normal distribution is denoted as  . In addition, we always set 

the variance for the second normal distribution as 1. The ranges of  values are 1, 2 and 3. 
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The means difference between the first and the second normal distributions is denoted as 

 . The  values are 0, 1, 3, and 6. The correlations between baseline and post-baseline 

measures are set to low ( 0.2  ) and high ( 0.8  ) respectively. The sample size is 

evenly allocated to the intervention and control groups and the total sample size of entire 

sample is chosen as 20, 40 and 60. The treatment effect range is from 0.1 to 0.5 increasing 

by 0.1.  

 

Evaluation 

A linear model is used to model the effect of the i
th

 subject in the intervention or 

control group, 0 1 2

1

k

i i j j id t x       , with the difference between the intervention 

and control is 1 ( )T C T C

i i i id d       . Considering cluster as a fixed effect, to test the 

null hypothesis 0 :H there is no treatment effect, we test 0 1: 0H   . For every simulation, 

the data are used to test the null hypothesis and a p-value is calculated.  The number of p-

values less than 0.05 divided by total number of simulations is the estimated probability 

that the p-value less than 0.05; that is, the power for a set of parameters when treatment 

effect is greater than 0, and otherwise it is type I error when no treatment effect. 
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CHAPTER 4 Results 

 

All power calculations with or without clustering were simulated based on the 

parameters mentioned in the methods section, but the only results presented here have 

weighted proportions p for the first distribution of 0.3 and 0.5; the range of variance ratio 

 values were 1 and 3; the means differences   between the first and the second normal 

distributions were 0, 3, and 6; the correlations   between baseline and post-baseline 

measures were set to low (=0.2) and high (=0.8); the sample sizes n were 60, 40, and 20, 

and the treatment effect d range was 0, 0.3 and 0.5. And the presented results here can 

represent all the power calculation we conducted. 

Table 1 presents the power with or without clustering for different values of  ,  and d 

when fixing other parameters p=0.3, 2 =1 and n=40. From the table, the power with or 

without clustering are very close to 0.05 when there is no treatment effect (d=0), and the 

bold numbers show that the power increases with clustering, and the rate of increase is 

higher for 0.2   compared to 0.8  .  

delta rho 

d=0 

cluster 

d=0  

no-cluster 

d=0.3 

cluster 

d=0.3 

no-cluster 

d=0.5 

cluster 

d=0.5 

no-cluster 

0 0.2 0.051 0.048 0.146 0.114 0.327 0.231 

3 0.2 0.054 0.055 0.131 0.114 0.275 0.230 

6 0.2 0.046 0.049 0.148 0.111 0.318 0.235 

0 0.8 0.050 0.050 0.319 0.309 0.697 0.682 

3 0.8 0.045 0.052 0.309 0.313 0.677 0.683 

6 0.8 0.051 0.053 0.322 0.308 0.698 0.681 
 

Table1: Power for p=0.3, 2 =1 and n=40 
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In order to present the effects of the parameters on the power, plots of power versus 

d for different values of , and power versus   for different d are plotted and presented in 

Appendix A. In Figure 1, the three plots on the left side are plots of power versus treatment 

effect d where values of  are 0, 3 and 6 from top to bottom; and the three plots on the 

right side are plots of power versus  where values of d are 0, 0.2 and 0.5. 

As seen in Figure 1 and other plots in the Appendix, the power with or without 

considering clustering prior to randomization increases as the treatment effect d increases, 

and also power with clustering prior to randomization was higher than the one without 

clustering no matter the change of the mean differences   between two mixture normal 

distributions and also the change of the treatment effect d. Except that when the d=0, that 

is under the null hypothesis, there is no treatment effect, here the power actually is type I 

error, and it maintains at 0.05 no matter with or without clustering. That means we can 

control type I error by this method. When the two distributions have same variances, the  

difference between the power with cluster stratification versus without is smaller—for 

fixed treatment effect d—when the mean difference is moderate, 3  , but larger for zero 

or larger mean differences beyond moderate,  is 0 or 6.  
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Figure 1: Power versus d or   (  =0.2, p =0.3, 2 =1 and n =40) 
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Figure 2: Power versus d or   (  =0.8, p =0.3, 2 =1 and n =40) 

In Figure 2 with 0.8  , differences between the power with or without stratification 

were too small to be noticed. This is because as the correlation  of the mixture 

distribution increases, the overall variance decreases, so that there is less room to decrease 



www.manaraa.com

19 

variance to increase power. As we know, clustering will increase the degrees of freedom 

for analysis, but it still does not hurt the power. Also we can conclude that as  increases, 

the difference between the power with versus without clustering decreases. As we change 

the proportion p of the first distribution in the mixture normal distribution, and keep the 

rest of the parameters for the sample, the power will not change much according to the 

plots in the Appendix A. 

Figure 1, 3 and 4 have the same parameters and only differ by the sample size n 

(n=40 for Figure 1, n=20 for Figure 3 and n=60 for Figure 4). The power increases as the 

sample size increases. However when the sample sizes increase from 20 to 40, the 

differences of the power between with or without clustering increase, but when the sample 

sizes increase from 40 to 60, it is very difficult to notice the increase.  
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Figure 3: Power versus d or   (  =0.2, p =0.3, 2 =1 and n =20) 
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Figure 4: Power versus d or   (  =0.2, p =0.3, 2 =1 and n =60) 
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CHAPTER 5 Discussion 

 

According to all the results, no matter with or without baseline clustering, the 

estimated type I errors are close to 0.05. This means our method achieves the nominal type 

I error probability, even with non-normal data.  

The power of detecting the treatment effect increases with clustering on baseline 

prior to randomization. As expected, the power increases as the treatment effect and 

sample size increase. When the sample size is large, there is little room for improvement in 

power. For all the results we simulated, the largest increase of power is 15%, 

corresponding to a sample size of 60, treatment effect of 0.5, proportion of the first 

distribution equal to 0.3, and the two distributions having equal means and variances with 

pre-post correlation being 0.2. 

However, the improvement in power with baseline clustering is small, even 

negligible, when the correlation between pre-post measurements is high. For example, 

when the correlation is 0.8 and the two distributions have the equal variance, it is very 

difficult to notice the increase of the power related to baseline clustering. The power could 

be decreased by stratification since clustering takes up some degrees of freedom in 

modeling the treatment effect. In this simulation study, only increases in power, though 

some negligible, were observed.  

When the two distributions have equal variances, the improvement in power is also 

smaller when the mean difference of the two distributions is 3   as compared to 0  or 

6. The two distributions have the same mode when 0   but the modes will separate as 
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the mean difference increases. For moderate separation the overall distribution is less 

concentrated around its center; that is, the data do not tend to cluster and clustering on 

baseline corresponds to less improvement in power. As the mean difference reaches 6 or 

more, the two distributions are almost completely separated and the data tend to cluster 

around one or the other mode.  In this case the baseline measures are naturally clustered 

and we see that baseline clustering improves the power. 

This simulation study shows that baseline clustering improves the power, though 

less so if the pre-post measures are highly correlated or if the data do not naturally cluster.  

However, clustering on baseline data before randomization is recommended since it will 

improve the power of a pre-post test. 
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CHAPTER 6 Summary and Future Studies 

 

 The power of detecting the treatment difference is increased by clustering on 

baseline measures prior to randomization.  

In this thesis, the clustering method used can only applied to one dimensional data. 

An algorithm that reaches optimality, is repeatable, and meets constraints on cluster size 

remains to be developed for multidimensional data.  

We treated cluster membership as a fixed effect. Since randomization occurs within 

cluster, treating the cluster as a random effect should not alter our results. However, from 

sample to sample the clustering will be different. An additional element of variance is 

induced by this method of clustering. Park and Johnson (2006) studied the variance for 

pair-matching. Future work could do the same for cluster-matching. 

In our method, we fixed the variance of the second distribution in the mixture 

normal distribution for the baseline measurements to be 1, set the variance of the first 

distribution as the ratio of the two distributions 2 , and we used different values of 2  for 

simulation. Actually the total variance for the paired differences are an increasing function 

of 2 . The observed change in power is affected by the total variance as well as—

possibly—the change of the ratio of the two variances. These two effects on variance are 

confounded in this study. In order to avoid this limitation, we can fix the total variance, but 

still study the ratio of the two variances. 
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